Let $u,v\in \{0,1\}^n$ be binary strings (words) of length $n$.
The Hamming-distance of $u$ and $v$ is $$\mathrm{d_H}(u,v) = \lvert \{ i \enspace\colon\enspace u_i \neq v_i\}\rvert.$$
An $(n,d_\min)$-code is a set of words $C\subseteq \{0,1\}^n$ with $$\mathrm{d_H}(u,v) \geq d_\min \quad\text{for all } u,v\in C, u\neq v.$$
$${\color{darkorange}A(n,d_\min)} := \max_{(n,d_\min)\text{-code }C} |C|.$$
The weight of a word is $$\mathrm{wt}(u) := \mathrm{d_H}(u, 0^n) = \lvert\{ i \enspace\colon\enspace u_i = 1\}\rvert.$$
An $(n, d_\min, w)$-constant weight code is a code consisting of words of a fixed weight $w$.
$${\color{darkorange}A(n,d_\min,w)} := \max_{(n,d_\min,w)\text{-code }C} |C|.$$
Then clearly $A(n, d_\min, w) = \alpha(G)$.
$$\small \begin{align} \mathrm{Las}_{r}:=\sup &\sum y_{\{v\} }\\ \text{s.t. }& M(y):=\left(y_{C_1\cup C_2}\right)_{C_1, C_2 \in \mathcal{C}_r} \succcurlyeq 0\\ & y_C = 0 \quad \text{ if $C$ is not an $(n, d_\min, w)$-code}\\ & y_C \in \mathbb{R} \quad \text{for }C\in\mathcal{C}_{2r}. \end{align} $$
We have $\mathrm{Las}_r \geq A(n, d_\min, w)$ and $\mathrm{Las}_{A(n, d_\min, w)} = A(n, d_\min, w)$.
The semidefinite constraint is of size $${\color{red}\Theta\left(n^{wr}\right)},$$ and grows too quickly for computations in practice.
This action extends to permute the rows and columns of the positive semidefinite matrix $$\sigma(M(y))=\left(y_{\sigma(C_1)\cup \sigma(C_2)}\right)_{C_1, C_2 \in \mathcal{C}_r} = M(\sigma(y)).$$
If $M(y)$ is positive semidefinite, then $\sigma(M(y))$ is as well!is positive semidefinite if and only if
but the sum of the block sizes is often significantly lower than $n$!
Well-known fact: The $n$'th level of the Lasserre hierarchy is sharp.
Proof idea: Applying a Möbius-transform to the rows and columns of the SDP diagonalizes the hierarchy.
Normally, we can only apply the transform to the final level of the Lasserre hierarchy.
We truncate the Lasserre hierarchy in such a way, that we can apply the transform earlier to sub-problems, partially diagonalizing it.
Each clique $\mathcal{B}_{\color{darkorange}K}$ is closed under addition of words with support within $[{\color{darkorange}K}]$.
We obtain one block for each code $\color{green}C$ on up to $\color{green}T$ coordinates.
We obtain blocks for each code ${\color{green}C}$ with symmetry $$\mathrm{Aut}({\color{green}C}) \times S_{n-|\mathrm{supp}({\color{green}C})|}. $$
We obtain the Flag Algebra $\mathcal{A}^{\color{green}C}$ of type ${\color{green}C}$ by restricting to the elements invariant under $S_{n-|\mathrm{supp}({\color{green}C})|},$ and letting $n$ run to infinity.
We call the thus obtained hierarchy $\mathrm{Raz}_{\color{green}T}$.
Here the Delsarte-, 3-point, 4-point and $\mathrm{Las}_2$-bounds are all $18\frac{1}{3}$.
We can compute $$\begin{align} \mathrm{Raz}_3 &= 165.0\quad \text{(3 variables)}\\ \mathrm{Raz}_4 &= 18.33\quad \text{(6 variables)}\\ \mathrm{Raz}_5 &= 18.33\quad \text{(11 variables)}\\ \mathrm{Raz}_6 &= 18.33\quad \text{(30 variables)}\\ \mathrm{Raz}_7 &= {\color{darkorange}18.08}\quad \text{(90 variables)}\\ \mathrm{Raz}_8 &= {\color{darkorange}17.51}\quad \text{(497 variables)}\\ \mathrm{Raz}_9 &= {\color{darkorange}17.51}\quad \text{(5044 variables)}\\ \end{align}$$
The SDPs are still quite small (order thousands of total variables in the blocks), the bottleneck is the computation of the coefficients of the hierachy itself.