$$\require{color}$$ $$\definecolor{darkorange}{rgb}{0.8, 0.45, 0}$$

Möbius Transform Based Bounds for Constant Weight Codes


Daniel Brosch

University of Klagenfurt

Joint work with Sven Polak.

July 10, 2023

Error correcting codes

Error correcting codes

Error correcting codes

Error correcting codes

Error correcting codes

Let $u,v\in \{0,1\}^n$ be binary strings (words) of length $n$.

The Hamming-distance of $u$ and $v$ is $$\mathrm{d_H}(u,v) = \lvert \{ i \enspace\colon\enspace u_i \neq v_i\}\rvert.$$

An $(n,d_\min)$-code is a set of words $C\subseteq \{0,1\}^n$ with $$\mathrm{d_H}(u,v) \geq d_\min \quad\text{for all } u,v\in C, u\neq v.$$

$${\color{darkorange}A(n,d_\min)} := \max_{(n,d_\min)\text{-code }C} |C|.$$

Constant weight code

The weight of a word is $$\mathrm{wt}(u) := \mathrm{d_H}(u, 0^n) = \lvert\{ i \enspace\colon\enspace u_i = 1\}\rvert.$$

An $(n, d_\min, w)$-constant weight code is a code consisting of words of a fixed weight $w$.

$${\color{darkorange}A(n,d_\min,w)} := \max_{(n,d_\min,w)\text{-code }C} |C|.$$

Existing bounds

Bound tables by Andries Brouwer

Independent set

Let $G=(V,E)$ be the graph with
  • vertices $V$$=\text{words of weight $w$}=\{0,1\}^n_{=w}$,
  • an edge for every $u,v\in V$ with $\mathrm{d_H}(u,v)<d_\min$

Then clearly $A(n, d_\min, w) = \alpha(G)$.

Polynomial optimization

$$\small\begin{align} A(n, d_\min, w) = \max &\sum_v x_v\\ \text{s.t. }&x_vx_u = 0 \quad \text{if } \mathrm{d_H}(u,v)<d_\min,\\ & x_v \in \{0,1\} \quad \text{for all } v\in\{0,1\}^n_{=w}. \end{align}$$

Convex relaxation: The Lasserre hierarchy

Let $\mathcal{C}_r = \{C \subseteq \{0,1\}^n \enspace \colon\enspace |C|\leq r\}$.

$$\small \begin{align} \mathrm{Las}_{r}:=\sup &\sum y_{\{v\} }\\ \text{s.t. }& M(y):=\left(y_{C_1\cup C_2}\right)_{C_1, C_2 \in \mathcal{C}_r} \succcurlyeq 0\\ & y_C = 0 \quad \text{ if $C$ is not an $(n, d_\min, w)$-code}\\ & y_C \in \mathbb{R} \quad \text{for }C\in\mathcal{C}_{2r}. \end{align} $$

We have $\mathrm{Las}_r \geq A(n, d_\min, w)$ and $\mathrm{Las}_{A(n, d_\min, w)} = A(n, d_\min, w)$.

Convex relaxation: The Lasserre hierarchy

Every fixed level of the Lasserre hierarchy can be computed in polynomial time in $n$.

The semidefinite constraint is of size $${\color{red}\Theta\left(n^{wr}\right)},$$ and grows too quickly for computations in practice.

SDP Symmetry reduction basics


Symmetric solutions

$S_n$ acts on the words $v=(v_1,v_2,\ldots, v_n)\in \{0,1\}^n$ by $$\sigma(v) = (v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}) .$$

This action extends to permute the rows and columns of the positive semidefinite matrix $$\sigma(M(y))=\left(y_{\sigma(C_1)\cup \sigma(C_2)}\right)_{C_1, C_2 \in \mathcal{C}_r} = M(\sigma(y)).$$

If $M(y)$ is positive semidefinite, then $\sigma(M(y))$ is as well!

How do we exploit symmetries?

As the feasible set of an SDP is convex, we can average feasible solutions: $$\mathcal{R}(M(y)) := \frac{1}{|{\color{darkorange}S_n}|} \sum_{ {\color{darkorange}\sigma}\in {\color{darkorange}S_n} }{\color{darkorange}\sigma}(M(y))$$ $\mathcal{R}(X)$ is again feasible, with the same objective value as $X$!

Symmetric optimal solutions

If $X^*$ is an optimal solution, then so is $\mathcal{R}(X^*)$. This solution is invariant under actions of ${\color{darkorange}S_n}$: $${\color{darkorange}\sigma}(\mathcal{R}(X^*)) = \mathcal{R}(X^*). $$ We can restrict the SDP to optimize only over invariant matrices: \begin{align} \inf\enspace&\langle C,X\rangle \\ \text{s.t.}\enspace& \langle A_i, X\rangle = b_i\quad \text{for all } i,\\ & X\succcurlyeq 0,\\ & {\color{darkorange}\mathcal{R}(X)=X}.\\ \end{align} In the case of ${\color{darkorange}G}=D_{10}=C_5\times Z_2$ we can restrict $X$ to have the pattern $$\begin{pmatrix} {\color{red}A} & {\color{darkorange}B} & {\color{green}C} & {\color{green}C} & {\color{darkorange}B}\\ {\color{darkorange}B} & {\color{red}A} & {\color{darkorange}B} & {\color{green}C} & {\color{green}C}\\ {\color{green}C} & {\color{darkorange}B} & {\color{red}A} & {\color{darkorange}B} & {\color{green}C}\\ {\color{green}C} & {\color{green}C} & {\color{darkorange}B} & {\color{red}A} & {\color{darkorange}B} \\ {\color{darkorange}B} & {\color{green}C} & {\color{green}C} & {\color{darkorange}B} & {\color{red}A}\\ \end{pmatrix}$$

Block-diagonalization

$$\tiny\begin{pmatrix} {\color{red}A} & {\color{darkorange}B} & {\color{green}C} & {\color{green}C} & {\color{darkorange}B}\\ {\color{darkorange}B} & {\color{red}A} & {\color{darkorange}B} & {\color{green}C} & {\color{green}C}\\ {\color{green}C} & {\color{darkorange}B} & {\color{red}A} & {\color{darkorange}B} & {\color{green}C}\\ {\color{green}C} & {\color{green}C} & {\color{darkorange}B} & {\color{red}A} & {\color{darkorange}B} \\ {\color{darkorange}B} & {\color{green}C} & {\color{green}C} & {\color{darkorange}B} & {\color{red}A}\\ \end{pmatrix} $$

is positive semidefinite if and only if

  • ${\color{red}A} + {\color{darkorange}B} + {\color{green}C} \geq 0$,
    • ${\color{red}A} +\frac{\sqrt{5}-1}{4}{\color{darkorange}B} - \frac{\sqrt{5}+1}{4}{\color{green}C} \geq 0$,
  • ${\color{red}A} -\frac{\sqrt{5}+1}{4}{\color{darkorange}B}+\frac{\sqrt{5}-1}{4}{\color{green}C} \geq 0$.
In general we may still get multiple bigger blocks

but the sum of the block sizes is often significantly lower than $n$!

Symmetry reduced Lasserre hierarchy for constant weight codes

  • [Schrijver, 1979]: The first level $\mathrm{Las}_1$ with entrywise nonnegativity is equivalent to the Delsarte LP-bound for constant weight codes.
  • [Schrijver, 2005] computes a 3-point bound (in between $\mathrm{Las}_1$ and $\mathrm{Las}_2$).
  • [Polak, 2019] computes a 4-point bound, and in some small cases the full second level $\mathrm{Las}_2$.





Razborov style hierarchy

Prioritizing codes on few vertices

Möbius-transforms (Not to be confused with Möbius-transformations)

Well-known fact: The $n$'th level of the Lasserre hierarchy is sharp.


Proof idea: Applying a Möbius-transform to the rows and columns of the SDP diagonalizes the hierarchy.

Example: Optimize over two binary variables $x_1,x_2\in\{0,1\}.$
The second level of the Lasserre hierarchy involves a matrix $\color{darkorange}X$ of the form $$\small\begin{pmatrix}1 & x_1 & x_2 & x_1x_2\\ x_1 & x_1 & x_1x_2 & x_1x_2\\ x_2 & x_1x_2 & x_2 & x_1x_2\\ x_1x_2 & x_1x_2 & x_1x_2 & x_1x_2\end{pmatrix} $$
The Möbius-transform assigns the following $$\begin{align}1 &\longrightarrow (1-x_1)(1-x_2)\\ x_1 &\longrightarrow x_1(1-x_2)\\ x_2 & \longrightarrow (1-x_1)x_2\\ x_1x_2 & \longrightarrow x_1x_2\end{align}$$ We multiply monomials $m$ with $(1-x_i)$ for all $x_i$ not appearing in $m$.
As $\color{darkorange}x_i(1-x_i)=0$, applying the transform to the rows and columns of $\color{darkorange}X$ diagonalizes the matrix: $$\tiny\begin{pmatrix}1 & x_1 & x_2 & x_1x_2\\ x_1 & x_1 & x_1x_2 & x_1x_2\\ x_2 & x_1x_2 & x_2 & x_1x_2\\ x_1x_2 & x_1x_2 & x_1x_2 & x_1x_2\end{pmatrix} \rightarrow\begin{pmatrix}(1-x_1)(1-x_2) & & &\\&x_1(1-x_2)&&\\&&(1-x_1)x_2&\\&&&x_1x_2\end{pmatrix}$$

Möbius-transform based symmetry reduction

Normally, we can only apply the transform to the final level of the Lasserre hierarchy.


We truncate the Lasserre hierarchy in such a way, that we can apply the transform earlier to sub-problems, partially diagonalizing it.

Back to codes

We are in the setting of
  • variables $x_{u}\in\{0,1\}$ corresponding to words $u$,
  • monomials $C$ corresponding to codes.

Prioritizing "small" codes

We prioritize codes with small support. Let $\color{green}T$ be the maximum size of support we want to appear in the hierarchy.

We optimize over sums of squares $$\sum p_i^2, $$ where each square $p_i^2$ does not contain a code with support bigger than $\color{green}T$.
We optimize over sums of squares $${\color{red}[x]}^T X {\color{red}[x]},$$ where ${\color{red}[x]}$ contains codes with support size at most ${\color{green}T}$, where $X$ has a rank one decomposition $$X = X_1 + \ldots + X_k,$$ such that each ${\color{red}[x]}^T X_i {\color{red}[x]}$ is a linear combination of codes with support at most $\color{green}T$.
The $X_i$ correspond exactly to the maximal cliques in the sparsity pattern given by $$ (X_i)_{C_1,C_2} = 0 \quad\text{if }\lvert\mathrm{supp}(C_1\cup C_2)\rvert > {\color{green}T}.$$

The maximal cliques

For each ${\color{darkorange}K}\leq {\color{green}T}$ with ${\color{darkorange}K}\enspace\mathrm{mod}\enspace 2\equiv {\color{green}T}$, the maximal clique $\mathcal{B}_{\color{darkorange}K}$ contains the codes of the form:

Unions of codes within the same $\mathcal{B}_{\color{darkorange}K}$ result in a code with support of size at most $\color{green}T$.

Example: Maximal clique $w=3, {\color{green}T} = 5, {\color{darkorange}K} = 3$

$\mathcal{B}_{\color{darkorange}K}$ contains the codes with support in $[{\color{darkorange}K}] = \{1,2,3\}$ and one additional coordinate. $$\small\mathcal{B}_3 = \{1,x_{123},x_{12i}, x_{13i},x_{23i}, x_{123}x_{12i}, x_{123}x_{13i},x_{123}x_{23i},\}$$

Symmetry reduction

Symmetry reduction is trivial: We only consider the maximal cliques up to symmetry!

Möbius transform

Each clique $\mathcal{B}_{\color{darkorange}K}$ is closed under addition of words with support within $[{\color{darkorange}K}]$.


$\longrightarrow$ Möbius-transform on the first $\color{darkorange}K$ vertices.
If $C_1\vert_{[{\color{darkorange}K}]} \neq C_2\vert_{[{\color{darkorange}K}]}$, then the product of the transformed codes is zero.

$\longrightarrow$ One block for each code on $[K]$. We only need to consider codes up to isomorphism!

Example: Maximal clique $w=3, {\color{green}T} = 5, {\color{darkorange}K} = 3$

$$\small\mathcal{B}_3 = \{1,x_{123},x_{12i}, x_{13i},x_{23i}, x_{123}x_{12i}, x_{123}x_{13i},x_{123}x_{23i},\}$$ Splits into $$\small\left\lbrace {\color{darkorange}x_{123} }x_{12i}, {\color{darkorange}x_{123} }x_{13i}, {\color{darkorange}x_{123} }x_{23i}\right\rbrace$$ and $$\small\left\lbrace {\color{darkorange}(1-x_{123})}, {\color{darkorange}(1-x_{123})}x_{12i}, {\color{darkorange}(1-x_{123})}x_{13i}, {\color{darkorange}(1-x_{123})}x_{23i}\right\rbrace$$

Breaking Schur's Lemma

Let $\color{darkorange}M$, $\color{darkorange}N$ be two irreducible $G$-modules over a ring $R$. Let ${\color{green}\varphi} : {\color{darkorange}M}\to {\color{darkorange}N}$ be a homomorphism.
  • If $\color{darkorange}M$ and $\color{darkorange}N$ are not isomorphic, then ${\color{green}\varphi} \equiv 0$.
  • If ${\color{darkorange}M}\simeq {\color{darkorange}N}$ and $R$ is an algebraically closed field, then ${\color{green}\varphi} = c\mathrm{I}$ for a $c\in R$.

We optimize over $\{0,1\} = \mathbb{Z}_2$, which is not algebraically closed!
$$\small\begin{align}M_1 & = \mathrm{span}\left\lbrace x_{123}x_{12i}, x_{123}x_{13i}, x_{123}x_{23i}\right\rbrace\\ M_2 & = \mathrm{span}\left\lbrace (1-x_{123})x_{12i}, (1-x_{123})x_{13i}, (1-x_{123})x_{23i}\right\rbrace\end{align}$$ Both modules are isomorphic to the $S_{n-3}$-module $3M^{(1)}$, but also orthogonal to each other, as $x_{123}(1-x_{123}) = 0$.

Additional symmetries

We obtain one block for each code $\color{green}C$ on up to $\color{green}T$ coordinates.


The symmetries of each block are now given by $$\mathrm{Aut}({\color{green}C}) \times S_{n-|\mathrm{supp}({\color{green}C})|} $$ The symmetry groups are complicated!

We can still block-diagonalize the algebra numerically.

Connection to Razborov's hierarchy for flag algebras

We obtain blocks for each code ${\color{green}C}$ with symmetry $$\mathrm{Aut}({\color{green}C}) \times S_{n-|\mathrm{supp}({\color{green}C})|}. $$

We obtain the Flag Algebra $\mathcal{A}^{\color{green}C}$ of type ${\color{green}C}$ by restricting to the elements invariant under $S_{n-|\mathrm{supp}({\color{green}C})|},$ and letting $n$ run to infinity.

We call the thus obtained hierarchy $\mathrm{Raz}_{\color{green}T}$.

Comparing the hierarchies

In the setting of codes of constant weight $w$ we have \begin{equation} \mathrm{Las}_{ {\color{darkorange}d} } \geq \mathrm{Raz}_{2w\color{darkorange}d} \end{equation} and \begin{equation} \mathrm{Raz} _{\color{green}T} \geq \mathrm{Las} _{\binom{ {\color{green}T} }{w} }, \end{equation} where lower means better.

Results: Case $A(n,d,w) = A(11,4,3) = 17$

Here the Delsarte-, 3-point, 4-point and $\mathrm{Las}_2$-bounds are all $18\frac{1}{3}$.

We can compute $$\begin{align} \mathrm{Raz}_3 &= 165.0\quad \text{(3 variables)}\\ \mathrm{Raz}_4 &= 18.33\quad \text{(6 variables)}\\ \mathrm{Raz}_5 &= 18.33\quad \text{(11 variables)}\\ \mathrm{Raz}_6 &= 18.33\quad \text{(30 variables)}\\ \mathrm{Raz}_7 &= {\color{darkorange}18.08}\quad \text{(90 variables)}\\ \mathrm{Raz}_8 &= {\color{darkorange}17.51}\quad \text{(497 variables)}\\ \mathrm{Raz}_9 &= {\color{darkorange}17.51}\quad \text{(5044 variables)}\\ \end{align}$$

(Early) numerical results

  • We always reach at least the Delsarte-bound.
  • In some cases we improve over $\mathrm{Las}_2$, but not enough to improve best known bounds.

The SDPs are still quite small (order thousands of total variables in the blocks), the bottleneck is the computation of the coefficients of the hierachy itself.

Summary

  • We propose a new hierarchy of upper bounds for error correcting codes.
  • When working with binary variables, we can potentially do better symmetry reductions than Schur's Lemma implies.
  • Similar hierarchies may lead to improved bounds for other problems.